Disabling Intel ME In Firmware

Who Am |?

Brian Milliron
Founder of ECR Security
8 Years as Penetration Tester

10 Years as Security Architect/Network Administrator

Brief Explanation of Intel ME

Chip within a chip

Physically located on PCH (Platform Controller Hub)
Closed source

Includes Intel AMT for remote administration

Runs MINIX 3 OS

Included in all Intel chipsets since 2008

Runs on Intel Quark 32 bit microprocessor

Filesystem stored in SPI Flash

Also includes Boot Guard, TPM, DRM module and more

Intel ME capabillities

Active even in power off state so long as main power is connected

Has its own network stack for out of hand communication with NIC
bypassing the OS completely

Has full read/write access to all areas of system main memory
Has full access to system bus

Operates in SMM or protected system management mode so OS cannot
see or interfere with its operations

Basically God Mode. It can read and write to everything on the system.

If it recieves a magic packet from the NIC AMT can be activated remotely
and power on/off system, load/alter the OS, change BIOS settings, view
video output, anything a local user at the terminal could do.

History of Bugs in IME

In 2009 Invisible Things Lab developed a persistent rootkit which lives inside IME

In 2010 Vassilios Ververis developed a certificate based authentication bypass to
remotely enable, deploy and provision AMT even if AMT is disabled.

SA-00075 aka CVE-2017-5689 aka Silent Bob is Silent

Remotely exploitable authentication bypass vulnerability, which allows attacker to
send blank password to AMT and get access to full remote management
capabilities (God Mode)

AMT must be enabled
Listens on ports 623, 664, 16992-16995

Affects PCs, servers, firewalls, HSMs and other security appliances. Anything
with an Intel chip.

SA-00086 aka CVE-2017-5705
Buffer overflow leading to remote code execution

How Intel Locks Us Into Using IME

IME firmware located in region of SPI flash that is
Inaccessible to BIOS/OS

IME code modules are RSA sighed. If sighature
verification fails system will not boot.

LZMA and Huffman compressed with hidden directory to
prevent reverse engineering

Additional IME verification module runs every 30 min to
check if valid signed IME is present. If not, the computer
shuts down

Speculation on Nefarious Possibilities

NSA rootkit

NSA has a history with putting backdoors in enterprise products. Could IME be
another example?

IME is the perfect backdoor because it operates independently of CPU, cannot
be detected by OS level security tools, is always on, can access everything on
the system, and has out of band communications for data exfiltration

Some of the vulnerabilities could have been intentional to allow NSA remote
access while preserving “plausible deniability”

IME can be used to remotely access encryption keys by reading RAM while system
IS powered on

IME can be used to exfiltrate data off air-gapped systems by sending data out over
wireless even if the wireless is not enabled or configured

IME can be used to infect USB devices which then infect other computers

How to Disable IME the Easy Way

Some vendors allow you to purchase a computer with Intel
ME pre-disabled

Purism
System 76

Dell (for gov customers only)

How to Disable IME Yourself

Igor Skochinsky started the ball rolling by reverse engineering large parts of IME.

In 2016 Trammel Hudson discovered parts of Intel ME could be overwritten without
invalidating the signature checks

Nicola Corna followed up on the research and created a script to delete most of IME.

It turns out Intel wasn’t properly implementing integrity verification of the firmware
checksums

You actually can delete ALL of the IME modules except ROMP and BUP

In 2017 Positive Technologies discovered an undocumented mode called HAP or High
Assurance Platform put in at the request of the NSA which effectively disables IME after
boot. Turns out the NSA thinks IME is a security risk. Go figure. :)

Using both techniques together you can disable IME and delete it from firmware to
prevent it from reactivating.

However, since IME is built into the BIOS you need a new BIOS with the modified IME.

Introduction to Coreboot

Open source BIOS/UEFI firmware

Supported by Google @
Barebones functionality CorebOOt
Only initializes hardware then passes control to the OS
Supports secure boot using VBOOT2 module

Limited hardware support

Works with most Chromebooks

Most of the other supported hardware is older models: Intel
lvybridge and Sandybridge or AMD Athlon

Some older Macbooks, Thinkpads, and Elitebooks

Hardware Requirements & Cost

Raspberry Pi $50
SOIC-8 (or 16) Pomona Clip $10

Additionally for 1.8V chips
Bi-directional logic level converter
Breadboard
10nf capacitor
1.8V/3.3V multi-output linear

power supply

Preparing Coreboot ROM

Build coreboot from source
https://www.coreboot.org/Build HOWTO

Check out submodules
git submodule update --init —checkout

Download and build a payload
SeaBIOS (legacy) and Tianocore (UEFI) work well
https://www.coreboot.org/SeaBIOS

Make menuconfig

Need to configure Coreboot for your specific hardware

Must include proprietary binary blobs specific to the board, ie. video driver, LAN, and
this is also where we load the modified IME.

Super important to configure the correct location in ROM for the video BIOS or you
can get an unbootable system. Always go by the address listed in Ispci.

Binary blobs

The most confusing and difficult part of the process is getting the binary
blobs you will need to boot the system.

You will need the flash descriptor, video BIOS or VBT, Intel ME (cleaned),
PCH Reference Code, and Memory Reference Code (MRC). You might
also need an Intel Firmware Support Package (FSPS or FSPM).

First you need a copy of the stock ROM that comes with your PC. The best

source is the manufacturer website but you can also copy it from hardware
using flashrom.

Coreboot comes with a helper script extractblobs.sh that should do the

messy part for you. If it doesn’t work you need to run the cbfstool binary
manually.

“cbfstool MyBIOS.bin print” will show you all the binaries embedded in your
BIOS which you can then extract.

BIOS structure

MyBIOS.bin: 8192 kB, bootblocksize 2864, romsize 8388608, offset 0x700000

alignment: 64 bytes, architecture: x86

Name Offset Type Size
cmos_layout.bin 0x700000 cmos_layout 1164
pci8086,0406.rom 0x7004c0 optionrom 65536
spd.bin 0x710500 (unknown) 4096
cpu_microcode_blob.bin 0x711540 microcode 70720
fallback/romstage 0x722a00 stage 54210
fallback/ramstage 0x72fe00 stage 96382
config 0x7476¢c0 raw 6075
fallback/vboot 0x748ec0 stage 15980
fallback/refcode 0x74cd80 stage 75578
fallback/payload 0x75f500 payload 62878
u-boot.dtb 0x76eb00 (unknown) 5318
mrc.bin 0x79ffcO (unknown) 222876

Extracting binary blobs

Cbfstool MyBIOS.bin extract -r BOOT_STUB -n fallback/refcode -f refcode.elf -m x86

This will give you the PCH reference code.

Cbfstool MyBIOS.bin extract -r BOOT_STUB -n mrc.bin -f mrc.bin

This gets you the MRC. In order to find the video bios you need to look up the pci address first.
$ Ispci -vnn

01:00.0 VGA compatible controller [0300]: VIA Technologies, Inc. UniChrome Pro IGP
["'1106:3344™] (rev 01) (prog-if 00 [VGA controller])

Cbfstool MyBIOS.bin extract -r BOOT _STUB -n pcil106,3344.rom -f pci1106,3344.rom

This gets you the video bios. If you have an embedded ethernet BIOS you'll follow the same steps
to extract it.

Finally you need to run ifdtool to get the rest.

Ifdtool -x MyBIOS.bin

This outputs a number of files named “flashregion_#”

Number O will be your flashdescriptor and 2 will be the Intel ME

Neutering IME

Now comes the fun part!

Just run the me_cleaner.py script on the IME module you
extracted from the BIOS image.

python me_cleaner.py -S -O modified _image.bin
original_dump.bin

First you probably want to check that your platform is
supported

https://github.com/corna/me_cleaner/wiki/me_cleaner-
status

Building Final Coreboot ROM

Now that you have a disabled IME binary you are ready to build
the ROM you will be flashing onto firmware

Make a final check of your config file

Make sure coreboot points to the location of all your binary
blobs

Verify the PCI address of the VGA is correct

Make sure coreboot knows the path for the BIOS payload
Verify your mainboard model and vendor are correct
Take a look at all the other options

Build!

Setting Up Flashrom on RPI

Now that you have a coreboot ROM ready it’s time to flash

Check to see if your hardware Is supported

https://flashrom.org/Supported hardware
sudo apt-get install flashrom

Sometimes you need to build from source to be able to
write to newer chips since the packaged version may
be out of date.

Run raspi-config and enable SPI then reboot

Locating BIOS Chip

Typically located near CMOS battery
Most often 8 pin

Look for any chip with a large G (Gigabyte) or W
(Winbond)

Locating your BIOS chip

S—— =3=DBIOS Chl ’

i "‘jj«l 'nunumuu'

a®™ 0¥ g

fes

A
Nuah &

-
o= ah _an W%

FRNAL Bt
-

il Itlil!lmlllﬂlmIHNH

&
v

ldentifying BIOS Chip

Manufacturer’s logo (W for Winbond)
Model number printed on chip

25 Family

X Dual SPI

80 8Mb capacity
VAIZ SOIC-8 208 mil

Looking Up Pinout and Voltage
Requirements

You will need to find the datasheet for your specific BIOS
chip

Voltage should be either 3.3V or 1.8V. It may list a voltage
range such as 2.7-3.6V That means it's a 3.3V chip.
Voltages are rarely exact.

Pinout Diagram

4. PIN CONFIGURATION SOIC 208-MIL

/CS e VCC

2 /HOLD

CLK

4 DIO

Figure 1b. W25X40 and W25X80 Pin Assignments, 8-pin SOIC (Package Code SS)

Understanding the datasheet

The pinout has a dot next to pin 1. If you look at the physical
chip you will see a dimple next to a pin. That’s pin 1.

The pins may be labeled differently. Some manufacturers call
pin 2 SO and pin 5 Sl or SIO. CLK may be called SCLK and
WP may be ACC.

If you read the datasheet there should be a description of what
each pin functions as.

CS is Chip Select, DO is Data Output, WP is Write Protect,
GND is ground, DIO is Data Input, CLK is Clock, HOLD is
Hold, VCC is the power pin. If the labeling is different just
match function for function.

Connecting the RPI to the BIOS

Chip

RPI

Pin 24 CEQO
Pin 21 MISO
Pin 25 GNF
Pin 19 MOSI
Pin 23 SCLK

Pin 17 3.3V

BIOS
pin 1 CS

pin 2 DO
pin 4 GND
pin 5 DIO

pin 6 CLK

pin 8 VCC*
pin 7 HOLD*
and pin 3 WP*

*(You will need to splice 3 wires onto the
one or use a breadboard to bridge.)

3.3V
GPIO 2 (12C1_SDA)
GPIO 2 (12C1_SCL)
GPIO 4 (GPCLKD)
GND

GPIO 17

GPID 27

GPIOD 22

3.3V

GPIC 10 (SPI_MOSI)

GPIO 9 (SPL_MISO) E
GPIO 11 (SPI_SCLK) [EE
GhD B

I0_SD g

GPFIC S E

GPIC &

GPIO 13 [
GPIo 19 E
GPIO 26 B

GND E

N
v

3 GND

GPIO 14 (UART_TXD)

B GPIO 15 (UART RXD)
4 GPIO 18

GMND

Bl GPIO 23
i GPIO 24
| 0 GMND

el GPIO 25

GPIO & (SPI_CED)

B Grio7(sPLCEY)

ID_SC

E] cno
B crio 12
| 34 [ells
E crio 16
B GPIC 20

GPIO 21

Rpi Connected to BIOS Chip

Reapbarry 3j g g
© "uphu:“;:“:o::"' S a._F_}
_E Fam
gL .y §Ei 1
pg— | AN

| g, =3 2
s Bira

TEE 10, daca.m
N
[T

Building a Circuit to Step Down
Voltage

If you have a 1.8V BIOS chip you will need to —F
step down the voltage or else fry your BIOS. 2 q:l‘ |— ot

In this diagram the Raspberry Pi is on the upper 7 WP scik
left, the Logic Level Converter is mounted on a ZH -

24

GND g

— V4
Lv3

breadboard in the lower center, and the JrJr

SOIC-8 clip and power supply are in the

upper right.

The 10nf capacitor should be mounted on the

breadboard power rails between the power supply
output and the SOIC power pins (1,3,4, and 8)
This removes fluctuations in the voltage that

can otherwise cause noise in the data signal.

Step Down Circuit

If Your BIOS Chip has 16 pins

If you have a BIOS chip with 16 pins, just use the datasheet to
choose the correct pins for CS, VCC, GND, HOLD, CLK, WP,

DO, and DI and connect them to the appropriate GPIO pins on
the Raspberry Pi. The rest most likely should be connected to
VCC, but may be left floatlng or connected to GND. Check the

docs to be sure.

Testing the Connection

Before you physically connect the SOIC clip to the BIOS
chip, make sure to disconnect the AC adapter and battery
from the laptop. The Pi should be the only source of
power. (unless you are using the step down circuit)

Once its connected start by reading the existing BIOS
flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=1000 -r flashtestl.bin

Do this 3 times and then md5sum each output file to
compare. If the hash comes back the same for all 3 you
have a good connection, if not remove and replace the
SOIC clip and make sure all the wires are firmly seated.

Writing the Coreboot ROM to BIOS

Once you have tested the connection and are getting
reliable reads now you are ready to write.

flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=1000 -w coreboot.rom

If there were no errors then you should see the SeaBIOS
(or TianoCore) screen when you plug your laptop back in
and boot it up.

Success!

SeaBl0S (version rel-1.9.3-0-geZfc41e)
Machine UUID 'l mom

Press ESC for boot menu.

Select boot device:

. AHCI/0: CTS00BX100SSD1 ATA-9 Hard-Disk (465 GiBytes)
. Payload [memtestl

. Payload [tint]
. Payload [nuramcuil
. Payload [coreinfol

What Happens Iif it Doesn't Work

Just because the screen is blank doesn’t mean it's not working. There could be a

problem with the VGA BIOS. Wait a bit and see if the Linux load screen comes up.
Coreboot also comes with a serial output capability for troubleshooting so you can

see what the error is.

Try reflashing. If that doesn’t work you can just flash the original BIOS back.
Check all the settings in the coreboot config file.
Check all the wiring connections with a multimeter.

If flashrom can’t detect your chip you can specify manually with the -m flag, though
this usually indicates a poor electrical connection.

Flashrom developers can be reached for support questions on the #flashrom
channel on freenode.net

The coreboot support mailing list is at

http://www.coreboot.org/mailman/listinfo/coreboot

Resources

http://io.netgarage.org/me/
https://www.ssh.com/vulnerability/intel-amt/
https://www.cs.cmu.edu/~davide/bad_thing.html

https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ ME_firmware _on_sandybridge
and_ivybridge.html

https://puri.sm/posts/purism-librem-laptops-completely-disable-intel-management-engine/
https://blog.system76.com/post/168050597573/system76-me-firmware-updates-plan
https://media.ccc.de/v/34c3-8782-intel_me_myths and_reality
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html
https://github.com/corna/me_cleaner/

https://libreboot.org/docs/install/rpi_setup.html

https://mrchromebox.tech/
https://tylercipriani.com/blog/2016/11/13/coreboot-on-the-thinkpad-x220-with-a-raspberry-pi/

Contact Info

If you have comments, feedback or want to work together
please contact me at:

research@ecrsecurity.com

If you want to hire me.
ECR Security

http://www.ecrsecurity.com

mailto:research@ecrsecurity.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

