

Disabling Intel ME in Firmware

Who Am I?

● Brian Milliron

● Founder of ECR Security

● 8 Years as Penetration Tester

● 10 Years as Security Architect/Network Administrator

Brief Explanation of Intel ME

● Chip within a chip

● Physically located on PCH (Platform Controller Hub)

● Closed source

● Includes Intel AMT for remote administration

● Runs MINIX 3 OS

● Included in all Intel chipsets since 2008

● Runs on Intel Quark 32 bit microprocessor

● Filesystem stored in SPI Flash

● Also includes Boot Guard, TPM, DRM module and more

Intel ME capabilities

● Active even in power off state so long as main power is connected

● Has its own network stack for out of band communication with NIC
bypassing the OS completely

● Has full read/write access to all areas of system main memory

● Has full access to system bus

● Operates in SMM or protected system management mode so OS cannot
see or interfere with its operations

● Basically God Mode. It can read and write to everything on the system.

● If it recieves a magic packet from the NIC AMT can be activated remotely
and power on/off system, load/alter the OS, change BIOS settings, view
video output, anything a local user at the terminal could do.

History of Bugs in IME

● In 2009 Invisible Things Lab developed a persistent rootkit which lives inside IME

● In 2010 Vassilios Ververis developed a certificate based authentication bypass to
remotely enable, deploy and provision AMT even if AMT is disabled.

● SA-00075 aka CVE-2017-5689 aka Silent Bob is Silent

– Remotely exploitable authentication bypass vulnerability, which allows attacker to
send blank password to AMT and get access to full remote management
capabilities (God Mode)

– AMT must be enabled
– Listens on ports 623, 664, 16992-16995
– Affects PCs, servers, firewalls, HSMs and other security appliances. Anything

with an Intel chip.
● SA-00086 aka CVE-2017-5705

– Buffer overflow leading to remote code execution

How Intel Locks Us Into Using IME

● IME firmware located in region of SPI flash that is
inaccessible to BIOS/OS

● IME code modules are RSA signed. If signature
verification fails system will not boot.

● LZMA and Huffman compressed with hidden directory to
prevent reverse engineering

● Additional IME verification module runs every 30 min to
check if valid signed IME is present. If not, the computer
shuts down

Speculation on Nefarious Possibilities

● NSA rootkit

– NSA has a history with putting backdoors in enterprise products. Could IME be
another example?

– IME is the perfect backdoor because it operates independently of CPU, cannot
be detected by OS level security tools, is always on, can access everything on
the system, and has out of band communications for data exfiltration

– Some of the vulnerabilities could have been intentional to allow NSA remote
access while preserving “plausible deniability”

● IME can be used to remotely access encryption keys by reading RAM while system
is powered on

● IME can be used to exfiltrate data off air-gapped systems by sending data out over
wireless even if the wireless is not enabled or configured

● IME can be used to infect USB devices which then infect other computers

How to Disable IME the Easy Way

● Some vendors allow you to purchase a computer with Intel
ME pre-disabled

● Purism

● System 76

● Dell (for gov customers only)

How to Disable IME Yourself

● Igor Skochinsky started the ball rolling by reverse engineering large parts of IME.

● In 2016 Trammel Hudson discovered parts of Intel ME could be overwritten without
invalidating the signature checks

● Nicola Corna followed up on the research and created a script to delete most of IME.

● It turns out Intel wasn’t properly implementing integrity verification of the firmware
checksums

● You actually can delete ALL of the IME modules except ROMP and BUP

● In 2017 Positive Technologies discovered an undocumented mode called HAP or High
Assurance Platform put in at the request of the NSA which effectively disables IME after
boot. Turns out the NSA thinks IME is a security risk. Go figure. :)

● Using both techniques together you can disable IME and delete it from firmware to
prevent it from reactivating.

● However, since IME is built into the BIOS you need a new BIOS with the modified IME.

Introduction to Coreboot

● Open source BIOS/UEFI firmware

● Supported by Google

● Barebones functionality

● Only initializes hardware then passes control to the OS

● Supports secure boot using VBOOT2 module

● Limited hardware support

– Works with most Chromebooks
– Most of the other supported hardware is older models: Intel

Ivybridge and Sandybridge or AMD Athlon
– Some older Macbooks, Thinkpads, and Elitebooks

Hardware Requirements & Cost

● Raspberry Pi $50

● SOIC-8 (or 16) Pomona Clip $10

Additionally for 1.8V chips

● Bi-directional logic level converter $8

● Breadboard $5

● 10nf capacitor $1

● 1.8V/3.3V multi-output linear $20

 power supply

Preparing Coreboot ROM

● Build coreboot from source

– https://www.coreboot.org/Build_HOWTO
● Check out submodules

– git submodule update --init –checkout
● Download and build a payload

– SeaBIOS (legacy) and Tianocore (UEFI) work well
– https://www.coreboot.org/SeaBIOS

● Make menuconfig

– Need to configure Coreboot for your specific hardware
– Must include proprietary binary blobs specific to the board, ie. video driver, LAN, and

this is also where we load the modified IME.
– Super important to configure the correct location in ROM for the video BIOS or you

can get an unbootable system. Always go by the address listed in lspci.

Binary blobs

● The most confusing and difficult part of the process is getting the binary
blobs you will need to boot the system.

● You will need the flash descriptor, video BIOS or VBT, Intel ME (cleaned),
PCH Reference Code, and Memory Reference Code (MRC). You might
also need an Intel Firmware Support Package (FSPS or FSPM).

● First you need a copy of the stock ROM that comes with your PC. The best
source is the manufacturer website but you can also copy it from hardware
using flashrom.

● Coreboot comes with a helper script extractblobs.sh that should do the
messy part for you. If it doesn’t work you need to run the cbfstool binary
manually.

● “cbfstool MyBIOS.bin print” will show you all the binaries embedded in your
BIOS which you can then extract.

BIOS structure

● MyBIOS.bin: 8192 kB, bootblocksize 2864, romsize 8388608, offset 0x700000

● alignment: 64 bytes, architecture: x86

●

● Name Offset Type Size

● cmos_layout.bin 0x700000 cmos_layout 1164

● pci8086,0406.rom 0x7004c0 optionrom 65536

● spd.bin 0x710500 (unknown) 4096

● cpu_microcode_blob.bin 0x711540 microcode 70720

● fallback/romstage 0x722a00 stage 54210

● fallback/ramstage 0x72fe00 stage 96382

● config 0x7476c0 raw 6075

● fallback/vboot 0x748ec0 stage 15980

● fallback/refcode 0x74cd80 stage 75578

● fallback/payload 0x75f500 payload 62878

● u-boot.dtb 0x76eb00 (unknown) 5318

● mrc.bin 0x79ffc0 (unknown) 222876

Extracting binary blobs

● Cbfstool MyBIOS.bin extract -r BOOT_STUB -n fallback/refcode -f refcode.elf -m x86

● This will give you the PCH reference code.

● Cbfstool MyBIOS.bin extract -r BOOT_STUB -n mrc.bin -f mrc.bin

● This gets you the MRC. In order to find the video bios you need to look up the pci address first.

● $ lspci -vnn

● 01:00.0 VGA compatible controller [0300]: VIA Technologies, Inc. UniChrome Pro IGP
['''1106:3344'''] (rev 01) (prog-if 00 [VGA controller])

● Cbfstool MyBIOS.bin extract -r BOOT_STUB -n pci1106,3344.rom -f pci1106,3344.rom

● This gets you the video bios. If you have an embedded ethernet BIOS you’ll follow the same steps
to extract it.

● Finally you need to run ifdtool to get the rest.

● Ifdtool -x MyBIOS.bin

● This outputs a number of files named “flashregion_#”

● Number 0 will be your flashdescriptor and 2 will be the Intel ME

Neutering IME

● Now comes the fun part!

● Just run the me_cleaner.py script on the IME module you
extracted from the BIOS image.

– python me_cleaner.py -S -O modified_image.bin
original_dump.bin

● First you probably want to check that your platform is
supported

– https://github.com/corna/me_cleaner/wiki/me_cleaner-
status

Building Final Coreboot ROM

● Now that you have a disabled IME binary you are ready to build
the ROM you will be flashing onto firmware

● Make a final check of your config file

– Make sure coreboot points to the location of all your binary
blobs

– Verify the PCI address of the VGA is correct
– Make sure coreboot knows the path for the BIOS payload
– Verify your mainboard model and vendor are correct
– Take a look at all the other options

● Build!

Setting Up Flashrom on RPi

● Now that you have a coreboot ROM ready it’s time to flash

● Check to see if your hardware is supported

– https://flashrom.org/Supported_hardware
● sudo apt-get install flashrom

– Sometimes you need to build from source to be able to
write to newer chips since the packaged version may
be out of date.

● Run raspi-config and enable SPI then reboot

Locating BIOS Chip

● Typically located near CMOS battery

● Most often 8 pin

● Look for any chip with a large G (Gigabyte) or W
(Winbond)

Locating your BIOS chip

Identifying BIOS Chip

● Manufacturer’s logo (W for Winbond)

● Model number printed on chip

– 25 Family
– X Dual SPI
– 80 8Mb capacity
– VAIZ SOIC-8 208 mil

Looking Up Pinout and Voltage
Requirements

● You will need to find the datasheet for your specific BIOS
chip

● Voltage should be either 3.3V or 1.8V. It may list a voltage
range such as 2.7-3.6V That means it’s a 3.3V chip.
Voltages are rarely exact.

● Pinout Diagram

Understanding the datasheet

● The pinout has a dot next to pin 1. If you look at the physical
chip you will see a dimple next to a pin. That’s pin 1.

● The pins may be labeled differently. Some manufacturers call
pin 2 SO and pin 5 SI or SIO. CLK may be called SCLK and
WP may be ACC.

● If you read the datasheet there should be a description of what
each pin functions as.

● CS is Chip Select, DO is Data Output, WP is Write Protect,
GND is ground, DIO is Data Input, CLK is Clock, HOLD is
Hold, VCC is the power pin. If the labeling is different just
match function for function.

Connecting the RPi to the BIOS
Chip

● RPi BIOS

● Pin 24 CE0 pin 1 CS

● Pin 21 MISO pin 2 DO

● Pin 25 GNF pin 4 GND

● Pin 19 MOSI pin 5 DIO

● Pin 23 SCLK pin 6 CLK

 pin 8 VCC*

● Pin 17 3.3V pin 7 HOLD*

 and pin 3 WP*

*(You will need to splice 3 wires onto the

one or use a breadboard to bridge.)

Rpi Connected to BIOS Chip

Building a Circuit to Step Down
Voltage

● If you have a 1.8V BIOS chip you will need to

 step down the voltage or else fry your BIOS.

● In this diagram the Raspberry Pi is on the upper

 left, the Logic Level Converter is mounted on a

 breadboard in the lower center, and the

 SOIC-8 clip and power supply are in the

 upper right.

● The 10nf capacitor should be mounted on the

breadboard power rails between the power supply

 output and the SOIC power pins (1,3,4, and 8)

● This removes fluctuations in the voltage that

can otherwise cause noise in the data signal.

Step Down Circuit

If Your BIOS Chip has 16 pins

● If you have a BIOS chip with 16 pins, just use the datasheet to
choose the correct pins for CS, VCC, GND, HOLD, CLK, WP,
DO, and DI and connect them to the appropriate GPIO pins on
the Raspberry Pi. The rest most likely should be connected to
VCC, but may be left floating or connected to GND. Check the
docs to be sure.

Testing the Connection

● Before you physically connect the SOIC clip to the BIOS
chip, make sure to disconnect the AC adapter and battery
from the laptop. The Pi should be the only source of
power. (unless you are using the step down circuit)

● Once its connected start by reading the existing BIOS
– flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=1000 -r flashtest1.bin

● Do this 3 times and then md5sum each output file to
compare. If the hash comes back the same for all 3 you
have a good connection, if not remove and replace the
SOIC clip and make sure all the wires are firmly seated.

Writing the Coreboot ROM to BIOS

● Once you have tested the connection and are getting
reliable reads now you are ready to write.
– flashrom -p linux_spi:dev=/dev/spidev0.0,spispeed=1000 -w coreboot.rom

● If there were no errors then you should see the SeaBIOS
(or TianoCore) screen when you plug your laptop back in
and boot it up.

Success!

What Happens if it Doesn't Work

● Just because the screen is blank doesn’t mean it’s not working. There could be a
problem with the VGA BIOS. Wait a bit and see if the Linux load screen comes up.
Coreboot also comes with a serial output capability for troubleshooting so you can
see what the error is.

● Try reflashing. If that doesn’t work you can just flash the original BIOS back.

● Check all the settings in the coreboot config file.

● Check all the wiring connections with a multimeter.

● If flashrom can’t detect your chip you can specify manually with the -m flag, though
this usually indicates a poor electrical connection.

● Flashrom developers can be reached for support questions on the #flashrom
channel on freenode.net

● The coreboot support mailing list is at

– http://www.coreboot.org/mailman/listinfo/coreboot

Resources

● http://io.netgarage.org/me/

● https://www.ssh.com/vulnerability/intel-amt/

● https://www.cs.cmu.edu/~davide/bad_thing.html

● https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_
and_ivybridge.html

● https://puri.sm/posts/purism-librem-laptops-completely-disable-intel-management-engine/

● https://blog.system76.com/post/168050597573/system76-me-firmware-updates-plan

● https://media.ccc.de/v/34c3-8782-intel_me_myths_and_reality

● http://blog.ptsecurity.com/2017/08/disabling-intel-me.html

● https://github.com/corna/me_cleaner/

● https://libreboot.org/docs/install/rpi_setup.html

● https://mrchromebox.tech/

● https://tylercipriani.com/blog/2016/11/13/coreboot-on-the-thinkpad-x220-with-a-raspberry-pi/

Contact Info

If you have comments, feedback or want to work together
please contact me at:

research@ecrsecurity.com

If you want to hire me.

ECR Security

http://www.ecrsecurity.com

mailto:research@ecrsecurity.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

