Rootkits
What is a rootkit?

A rootkit is a special variant of a Trojan, a.k.a. a RAT (Remote Administration
Tool). What separates a rootkit from a regular Trojan is that a rootkit, by definition,
occupies Ring 0, also known as root or kernel level, the highest run privilege
available, which is where the OS (Operating System) itself runs. Non-rootkit trojans
typically run in Ring 3, or user level, which is where ordinary applications run,
though some sources refer to userland trojans as “rootkits” also. Usually, but not
always, a rootkit will actively obfuscate and attempt to hide its presence from the
user and any security software present.

Rootkits subvert the OS through the kernel (core operating system) or
privileged drivers. This enables a rootkit to operate as a part of the OS itself rather
than a program being run by the OS. This high level of sophistication makes rootkits
extremely difficult to detect and remove. Often anti-virus products will be unable to
detect or remove a rootkit once it has taken over the OS and more specialized
detection and removal procedures are required.

What kinds of rootkits are there?

Rootkits may use a variety of techniques to gain control of the operating
system and hide from both the user and security software. Different techniques may
be used in combination to increase overall effectiveness. There are many variations
and not every technique will be discussed. Only those most relevant and common
will be discussed here. * Some common techniques include:

MBR infection

The MBR or Master Boot Record is the portion of the hard drive that tells the
BIOS (Basic Input Output System) where to find the OS (Operating System). This is
a critical handoff of responsibility between the BIOS which does the initial boot
sequence when the computer is started and the OS which takes over. By subverting
this process the rootkit (sometimes called bootkit) is able to inject itself between the
computer's hardware and OS, subtly altering data sent back and forth to mask its
presence and take over the system.

Every time the OS tries to read files from the hard drive the rootkit intercepts
the attempt and substitutes either fake data to hide itself or modified data to trick
the OS into loading and executing infected files. By selectively intercepting attempts
to read and execute kernel drivers the rootkit loads itself into memory and takes
over the OS. If the user attempts to view the rootkit files, the rootkit can give a
false report of there being no trace of its files. Since the rootkit often never actually
modifies the OS files on the hard drive itself, but only gives modified data when the
file is being loaded into memory, it becomes even harder to detect. It can also
detect and intercept any attempt to delete the rootkit itself or any portion thereof.
Even if the rootkit is deleted, since it is loaded in the MBR, the system can be
reinfected when it is rebooted.

1. OS subversion techniques used by ordinary trojans, such as IAT and EAT hooks, malicious App_Init
DLLs, etc are out of scope for this document. Only kernel level attacks are presented, so additional
information regarding these and other user mode attacks are left to the reader.

Newer versions of Windows incorporate protections to prevent the MBR from
being written to. However, rootkits have evolved to overcome this by writing directly
to the disk using SRB (SCSI Request Blocks). Not all computers use the MBR
method of booting the OS. Newer PCs may use EFI (Extensible Firmware Interface)
or UEFI (Unified Extensible Firmware Interface) which will be discussed later in the
document.

Hypervisor

A hypervisor is a virtual machine manager, which when used for legitimate
purposes allows a single physical computer to host and run more than one OS
simultaneously by creating multiple virtual machines, each of which appear to the OS
to be a physical computer. It simulates hardware and intercepts attempts by the OS
to access the hardware, then translates the request, and passes it to the actual
hardware. Hypervisors have many legitimate uses in computing, however a rootkit
can create a malicious hypervisor to hide its existence from the OS and the user.

There are several types of hypervisor rootkits. Some modify the bootloader
to create the malicious hypervisor during the bootup process in a way very similar to
an MBR rootkit. Others can subvert the OS and migrate it into a virtual machine
while it is still running, without any indication to the user and without requiring a
reboot. This is possible due to hardware support for virtualization built into most
modern CPUs. Intel's virtualization architecture is called VT-x and AMD’s is called
Pacifica.

A hypervisor rootkit would subvert a running OS by first checking to see
whether the hardware supports virtualization using a function such as vmx_init. It
would then reallocate system memory and split system resources using a function
such as vmx_fork which will put the rootkit into a privileged Supervisor mode beyond
Ring 0. It will then put the running OS and all active processes into a non-privileged
non-root mode where they cannot see or interact with the actual hardware or the
processes of the rootkit.

The hypervisor rootkit emulates virtual hardware for the OS, which the OS
cannot detect to be any different from the actual hardware. In such a situation the
rootkit becomes almost impossible to detect from within the compromised OS,
because it controls what the OS "sees". The only certain way is to do a forensic
exam of the hard drive to look for backdoors or modifications to the bootloader which
would allow the rootkit to reload after a reboot.?

The rootkit can also suspend its operation and even temporarily exit out of
virtualization mode if it detects the OS is attempting an operation which may
uncover its existence, such as by checking to see if virtualization extensions are
active or attempting to detect timing irregularities in certain system calls such as
CPUID. Because a hypervisor introduces a certain amount of latency in addition to
what would normally be expected without a hypervisor it may be possible to detect
some less sophisticated hypervisor rootkits. This is not reliable however for
advanced rootkits which can suspend or exit the virtual mode temporarily.

2. Hypervisor rootkits which are injected into memory and do not modify the file structure on the hard
drive will not be able to be detected by an examination of the hard disk, but will also not survive reboot.

Alternate Data Streams

Alternate Data Streams or ADS are a little known function of NTFS, a popular
file system used by Microsoft Windows products. ADS allows the OS to store
metadata about a file without changing the file itself. ADS are not viewable by
Windows Explorer or other common file viewers. They make a very good hiding
place for rootkits because there is no limit to the number or size of files that can be
stored invisibly in ADS. An executable may be stored in ADS and executed without
ever showing up on a file or directory listing. More and more AV (anti-virus)
products are now scanning ADS, so this is no longer widely used for modern trojans,
but is still common in rootkits a few years old. However, if you examine an infected
hard drive on a non-infected computer, you may be unable to detect the rootkit files
using standard file explorers and will need specialized tools which can scan ADS. It
is possible to manually create and read ADS streams, but only if you know the exact
stream identifier expressed in the form “drive letter:\path\filename:stream”. For
example c:\temp\tmpfile.tmp:hidden.exe

Slack space

Every file on a hard drive is allocated a certain amount of space. Because
space is allocated in fixed size "chunks" or disk clusters, most often the file that has
been allocated the space doesn't use all of its allocated space and there is a little bit
left over. This is known as slack space. Rootkits have long been known to hide in
such areas of the disk, spread out over the slack space allocated to several normal
files. Ordinary attempts to read the portions of the disk where rootkit resides will
simply show the file to which those disk clusters have been allocated. It takes
specialized tools to read these sections of the disk, and even then it is difficult to tell
a rootkit in slack space from the random junk data that would normally be there
anyway.

A rootkit taking advantage of this method will most likely store itself in the
slack space of protected system files that will not change much or ever, because of
the risk of having itself overwritten when the file to which the space is allocated
grows in size. Most AV tools and even AR (anti-rootkit) tools are not able to scan
slack space, which makes this an excellent hiding place for malware which will enable
it to remain undetected even when the hard drive is examined on a non-
compromised system.

Bad Sectors

Over time a hard drive may develop sectors (storage units) which can no
longer be reliably read from or written to, these are called bad sectors or bad blocks.
The OS keeps a record of these bad sectors in the MFT in Windows and the bad
blocks inode in Linux so it will not try to write to them in the future. Sectors marked
as bad are generally not readable because in most modern drives they are
transparently mapped to a pool of spare sectors either by the drive controller
hardware or in some cases the OS.

Because of this bad sectors make a favored hiding place for rootkits,
preferred over slack space because there is no danger of data in bad sectors being
overwritten. The rootkit simply marks the locations on disk where its files are stored
as bad, making those sectors inaccessible without direct disk access. Most software
uses APIs (Application Programming Interface) to access hardware, which requires

the hardware access request to go through the OS. This data hiding technique
makes the rootkit invisible to both regular AV and even specialized AR tools which
use standard APIs for scans. Forensic software capable of direct disk access and
reading raw sector data would be required to locate data stored in bad sectors, and
often rootkits using this method of hiding will intercept direct disk access requests
requiring the disk to be examined on a non-compromised system.

Hidden Partition

A partition is a logical division of the physical hard drive used for data access.
Some rootkits create a hidden partition within an existing disk partition. In order to
do this the rootkit has to create a disk object and a disk driver to access the new
hidden disk. In a Windows system this would either involve copying the existing
disk.sys driver object and modifying the dispatch function and device object to point
to the hidden partition or creating a whole new device object and driver set from
scratch.

Usually the IRP table will also be hooked to monitor and control access to the
hidden disk object and prevent the OS from accidentally overwriting the hidden data
since it overlaps the ordinary disk partition the OS already knows about. The rootkit
may also create a fake file and allocate the portion of the disk used by the hidden
partition to the fake file to prevent the OS from trying to allocate that space for
another purpose.

Commonly the hidden partition will be allocated a section of the hard drive at
the very end as this is the least likely to already have data. Any existing data will be
moved and the rootkit will intercept access attempts and transparently redirect them
to wherever it has moved the data. Modern rootkits will also encrypt the hidden
partition making it impossible to read without the correct encryption key and
encryption algorithm.

Interrupt Hooks

The OS uses a set of basic commands to interface with the computer
hardware as mediated by the BIOS. These commands are known as interrupt calls
and given numbers in hexadecimal. A rootkit which is able to intercept and modify
these calls is said to have hooked that call. Depending on how the interrupt is
hooked it may be known as an INT hook or IDT hook. Since interrupt calls are the
most basic, a rootkit which is able to hook them has control over the hardware at a
very low level. This technique is most commonly seen in MBR rootkits because INT
calls are used in the boot process. Specifically INT 13h, which enables direct access
to the hard drive, is commonly hooked by MBR rootkits. This enables a rootkit to
modify the disk directly, subverting any access control on the part of the OS. It also
enables the rootkit to intercept any attempt by the OS to read or modify data on the
disk and prevent or alter attempted data reads or modifications.

Message Hooks

Programs running in memory use messages to communicate changes and
user input to other programs and the OS. A message hook is used to either monitor
or intercept messages before they reach the intended system process. For Windows
OS they are created by calling the SetWindowsHook function with appropriate
parameters. Rootkits will often set message hooks because all user input,

keystrokes and mouse movements, creates messages. A rootkit which has hooked
these messages will be able to read and record all user activity on the PC. Since
there are many different messaging subroutines, it allows very fine grained control
over which functions will be monitored. Some common message hooks used by
rootkits are WH_KEYBOARD, WH_KEYBOARD_LL, WH_MSGFILTER, and WH_MOUSE.

SSDT Hooks

The System Service Descriptor Table or SSDT is used by Windows OS to
locate system services which are crucial to the functioning of the OS. In Linux OS
this function is held by the System Call Table. A rootkit which hooks this table can
alter it so that important system calls are routed to the rootkit. Any program which
attempts to use the SSDT will instead be funneled to the rootkit, and since the SSDT
is fundamental to the OS, every program must use it. SSDT hooks are very powerful
and commonly used by rootkits for stealth.

For example, if the NtQueryDirectoryFile function is hooked, the rootkit can
return false information to requesting programs, such as AV, about files and
directories on the hard drive, making itself invisible. In the same way, a rootkit may
hide its running processes, network activity, or Registry entries, such as with
NtEnumerateKey and NtEnumerateValueKey or for Linux sys_getdents and
Sys_write.

Because of the frequent use of SSDT hooks, many anti-rootkit programs scan
the SSDT for modifications, however rootkits are able to hide changes to the SSDT in
a variety of ways, such as by modifying the KTHREAD structure or modifying the
SSDT "on the fly" without leaving permanent traceable changes. Newer Microsoft OS
and 64bit OS have made hooking the SSDT much more difficult, however this is still
very common on Windows XP rootkits.

IRP Hooks

Any time a program needs to send or receive data from the computer
hardware an 1/0 Request Packet (IRP) is used as an intermediary between hardware
and software. This includes reading and writing data from the hard drive, RAM,
video, audio, and network. Hooking IRP generally involves modifying or replacing
hardware drivers. Rootkits use this method as another way of gaining privileged
access to hardware, while intercepting other access attempts.

A rootkit which has modified disk driver disk.sys or the low level disk driver
atapi.sys can control what other programs see on the hard drive, while tcpip.sys
allows a rootkit to hide network traffic. Initially few rootkits used these techniques,
but as other techniques came under more scrutiny, more and more rootkits began
using IRP hooks and coming up with novel ways to hook the IRP subsystem without
leaving obvious hooks in place.

For example by modifying the lowest level device driver for the hard drive
\Device\HarddiskO\DRO to no longer point to the default IRP handling subsystem via
IRP_MJ_INTERNAL_DEVICE_CONTROL routine but a parallel system controlled by the
malware, or adding a malicious device into a target device's IRP chain via
loAttachDevice. These are both sneaky ways to redirect IRPs without having to
modify the IRP dispatch table itself. Since there are many different drivers for
hardware, this makes detecting hooks that much harder for anti-rootkit software,

especially since, unlike SSDT, pointers in the IRP table are not all expected to point
back to the kernel, since there are many 3rd party drivers in use.

Other commonly hooked procedures include: IRP_MJ_READ, IRP_MJ WRITE,
IRP_MJ_SCSI, and DriverStartlo. Since some AR products began using passthrough
IOCTLs to directly access the disk and bypass the rootkit hooks, newer rootkits are
additionally hooking IRP_MJ_ DEVICE_CONTROL subcontrols such as
IOCTL_ATA_PASS_THROUGH and IOCTL_ATA_PASS_THROUGH_DIRECT or
SCSIOP_READ and SCSIOP_WRITE.

DKOM

A kernel object is a virtual placeholder for a resource that contains
information about it. Everything on a computer will have an associated kernel
object, every file, every process, every port, etc. When a kernel object is created, it
is given an index number called a handle, through which it is accessed. When a
program wants to make a change (e.g. create or destroy a process), it makes a
request to change the kernel object, and the kernel itself (Object Handler) decides
whether to grant or deny the request.

Normally the kernel itself is the only one able to directly change kernel
objects, however, in the last few years, rootkits have appeared which are able to
access kernel objects directly in what is called Direct Kernel Object Manipulation
(DKOM). It is another tool in the toolbox of the malware writer to be able to hide
thier own processes and drivers while interfering with other processes and files. But
it is much more stealthy than other methods such as replacing device drivers and
hooking tables for 2 reasons: 1. Because changes occur in memory only, there is no
record of them, and 2. Because no other program, not even AV, can access the
kernel objects, what happens in this reserved memory region is somewhat "behind
the curtain".

In Linux DKOM can be accomplished by writing to /dev/mem or /dev/kmem.
A DKOM rootkit in Windows XP will use the undocumented API
NtSystemDebugControl a hidden API used to directly access kernel memory.
However, it must open a handle to the memory at \\Device\PhysicalMemory, which is
one method of detecting it.

By modifying the EPROCESS structure, a DKOM rootkit can hide running
processes. Other often modified kernel objects are ETHREAD, TOKEN, and DRIVER.
These attacks allow the rootkit to hide processes and device drivers and change
process access tokens. A rootkit that modifies the kernel object of the page fault
handler can hide the contents of RAM from any other program. This means such a
rootkit can hide its own existence even from a scan of objects in memory or running
processes.

However, rules for manipulating kernel objects will change from one version
of the OS to another, making manipulation of those objects challenging, also because
of the delicacy of the operations involved any mistake will result in a system crash,
which can be a giveaway. Despite the difficulties in DKOM, it is expected more and
more rootkits will be using them in the future, since advances in OS security are
rendering hooks more difficult and because all OS must use kernel objects.

The latest versions of some rootkits are using DKOM to great effect by
blending it with IRP hooking, using DKOM to create phony devices and setting IRP
hooks on the phony device while using DKOM to link the phony and real device by
modifying the OBJECT_HEADER structure. In this way, the actual device is not
shown as being hooked, so it can evade anti-rootkit techniques. There is a great
deal of innovation occurring with DKOM rootkits and more creative methods of using
them to manipulate and hide data is to be expected.

Rootkit Trends - 2011

Rootkits are increasingly developed by professional malware developers
working in teams and accordingly are becoming highly sophisticated and complex,
comparable in many ways to the AV and AR products devoted to catching them.
Modern rootkits are highly obfuscated to confuse forensics and frustrate reverse
engineering, incorporate encrypted files, encrypted communications, and a modular
design that allows different types of malware from different designers to work
together by exporting malicious APIs and syscalls. This modular design allows
malware developers to specialize in one particular area: initial infection, hiding
malware files and activity, payload functionality, ie botnet, search engine results
modification, sending spam emails, capturing sensitive user data, etc, and
specialized plugin functions, ie keylogging, HTTPS, etc. These trends are making
rootkits more flexible and powerful as well as harder to detect and remove.

Rootkit detection

Since rootkits go to great pains to hide, they can be quite difficult to detect.
Additionally, since kernel rootkits run in Ring 0, they can subvert any other software
running, including tools trying to find them. For this reason, it is a good idea to take
the hard drive out of the suspected infected machine and attach it to a known clean
machine for examination.

One of the first indicators of a rootkit infection is system instability. Since
rootkits often replace core system drivers, any malfunction will crash the system.
Since rootkit drivers are not subject to the same quality standards of an OS vendor
bugs and system crashes are common, though this is becoming less true over time
as professional level rootkits become more common. Additionally, often rootkits are
designed to work with a very specific patch level for an OS. So if the OS is patched
and some dll is replaced that the rootkit has modified, it can cause serious system
problems, such as lockups and crashes. But then there are a few rootkits that don't
even try to be stealthy and pop up advertisements for pornography as well. All of
these can be potential indicators that a deeper examination is needed.

Prior to making any changes to a potentially rootkit compromised system, it is
a good idea to learn as much through passive observation as possible. Many rootkits
monitor system activity very closely and are programmed to look for anti-rootkit
programs running in memory and attempts to read or change sensitive areas of the
OS and hard drive which may represent attempts to detect or remove the rootkit.

Rootkits with an observer process will usually have some self defense code
which will activate if it detects any attempt to remove the rootkit. This can be
anything from terminating the process, to unhooking hooked tables and drivers, to
moving its code around in memory or on disk in an attempt to thwart investigation.
For this reason, it is a good idea to make a clone of the hard disk of the potentially
infected machine to examine without running the risk of alerting the rootkit on the
running machine that it is being investigated. With a clone you can safely kill
processes, modify files, and generally poke into the suspected rootkit and observe if
there is unusual behavior in response to this.

Kernel Mode Signing

One of the major security flaws of past Windows OS is that device drivers
were loaded in Ring 0. This is a major problem because device drivers often come
from 3" parties and are unverified, meaning they could be buggy or include
malicious code. This was a common way for rootkits to load themselves into kernel
memory in the past. 64 bit versions of newer Windows, Vista and later, incorporate
a security measure called kernel mode signing. This requires all kernel mode drivers
to be cryptographically signed, certifying their origin and trusted status.

Modern rootkits have found ways to overcome this security control. Rootkits
which subvert the MBR may use functions normally used for debugging purposes,
BcdLibraryBoolean_DisablelntegrityCheck and
BcdLibraryBoolean_AllowPrereleaseSignatures. Since an MBR rootkit controls the
boot process it is able to set either of these options at boot time to disable code
signing requirements and load malicious, unsigned kernel drivers.

Kernel Mode Patch Protection

Another security feature found in 64 bit versions of Windows, XP and newer,
is kernel mode patch protection (KPP) also known as PatchGuard. It prevents
modifications to the SSDT, IDT, GDT, and MSRs, creation of kernel stacks, and inline
patching of the kernel or kernel libraries. However, PatchGuard has several well
known bypass techniques, including hooking and/or modifying the PatchGuard code
itself or supporting system functions like the exception handler. Because the code
PatchGuard is attempting to regulate runs in Ring 0, it has full access to the kernel
and there is an ongoing cycle of attacks to disable or evade PatchGuard’s protections
and updates to PatchGuard to counter those attacks.

Unified Extensible Firmware Interface

The security design flaw exploited by MBR rootkits is that if they can get
direct access to the hardware at boot time all future software checks become
meaningless. UEFI includes a security control to eliminate this threat in the
hardware itself called secure boot. Secure boot requires cryptographic signatures on
all code loaded at boot time. The signatures create a chain of trust from the
software developer up to the certifying authority which certifies the software as
trusted. Any unauthorized modifications to a signed bootloader will cause the
integrity check to fail and prevent the system from booting. While this is not fool
proof it does provide a high degree of protection against rootkits and other malware
which may attempt to modify the bootloader or key boot components, i.e. NTLDR,
bootmgr, winload.exe, winresume.exe, or kdcom.dll. UEFI is becoming more
commonplace and is widely supported by hardware manufacturers and most modern
OS. As of this writing, there have been no verified instances of malware able to
bypass UEFI protections.?

Hardware Assisted Security

A major stumbling block to anti-rootkit efforts is the fact that all software
running in privileged execution mode (ring 0) on the CPU and with direct access to
hardware is effectively on equal terms with the OS, meaning a rootkit can alter or
disable the AR software hunting for it. Several attempts have been made to
incorporate AR technology directly into the hardware to give more of an advantage.
One of these was a PCI card called copilot which contained rootkit hunting code
burned into the firmware, able to monitor the host’s memory and filesystem at the
hardware level. This technology never caught on in the private sector but was
popular in the government sector.

Another hardware assisted security technology is called DeepSAFE. This
relies on virtualization, creating a hypervisor that runs at a higher level of privilege
than the OS and kernel level code within the OS, including rootkits. This means that
the scans running from within the hypervisor based security code cannot be easily
bypassed because it is not vulnerable to hooking from the OS layer. It can also
freeze the running system and examine the contents of RAM directly without having
to rely on the OS, which may have been subverted.

Compare Integrity Assurance Snapshot

If you have a snapshot of the hard drive from a known clean state using one
of the many intergrity assurance software products, such as Tripwire, Samhain,
OSSEC, AFICK, or AIDE, you can use it to track changes to the hard drive. This will
show you files and registry settings added, removed and altered, which is a good
first step to trying to track down changes made by a rootkit.

3. Secure boot depends on the chain of trust established by certificate authorities, which has been
successfully broken in rare instances. PKI and chain of trust attacks are outside the scope of this paper.

Be aware that the registry changes frequently as a matter of course and temp
files are regularly created and deleted in the appropriate folders. Rootkit authors are
aware of this and may try to mimic these normal patterns by hiding a rootkit in /tmp
or a .tmp file for example. Look for changes in any critical OS directories and cross
reference with the logs to determine if those were authorized changes. Registry
entries which could be used to load a rootkit into memory should also be given
special attention, some examples would be:

HKLM\SYSTEM\CurrentControlSet\Services,
HKLM\Software\Microsoft\Windows\CurrentVersion*
HKCU\Software\Microsoft\Windows\CurrentVersion*
HKLM\Software\Microsoft\Internet Explorer*
HKCU\Software\Microsoft\Internet Explorer*
HKCR\exefile\shelNopen\command
HKLM\Software\Classes\exefile\shel\open\command
HKLM\Software\Microsoft\ActiveSetup\InstalledComponents

Anti-Rootkit Products

There are a number of specialized anti-rootkit (AR) software products
available, some free and some commercial products. Some Windows AR include:
Rootkit Revealer, Blacklight, Rootkit Unhooker, GMER, Icesword, RAIDE, and Helios.
Some Linux AR include: chkrootkit, Rkdetector, rkhunter, Zeppoo, kstat, elfstat, and
KsID. While none of them are capable of detecting every rootkit, they can provide
some very useful information about the state of the OS.

Many older rootkits use direct SSDT and IAT hooks. In other words they
modify the tables to point directly to the rootkit code. These types of changes are
trivially easy for a scanner to detect. The AR scanner simply scans the IAT and
SSDT tables for pointers which don't point to the kernel itself. It then presents a list
of these hooks to the user for examination.

However, just because a hook is present, doesn't mean there is a rootkit.
There are other legitimate software applications which may also install hooks.
System security software such as AV and firewall will often hook SSDT tables. Poorly
programmed software which should use hooks limited to its own process, may
instead install global keyboard or mouse hooks which an AR scanner will flag as
suspicious. AV and firewalls will often hook the network stack or device drivers (ie
chained or filtered device drivers) to protect the system. ADS is used by jpeg image
files and saved webpages. Software debuggers will often hook exception handling
APls. In Linux systems, SE_Linux will often hook the sys call table. In theory, there
should be few enough hooks in an OS to carefully examine each one to determine
whether it is malicious or part of a known process. However, in order to counter
rootkits which become ever deeply buried in the OS, modern AV and AR products
often embed themselves just as deeply into the OS, in some cases using live kernel
patching techniques. In effect become benign rootkits themselves. The
documentation of system modifications for many of these products is woefully
incomplete or non-existent and because of this in some cases it may not be possible
to determine whether a given hook or kernel patch is a sign of a rootkit or an
undocumented AV or firewall function without removing the software.

Several examples of both benign and malicious hooks and kernel patches will
be shown to provide reference for your own investigations.

This screenshot shows Icesword reporting a global keyboard hook.

: File Dump FPlugin Wew Help
Lock for the KEYROARD hook

e ()

Functions Message Hooks: 7

@ ﬂ Handle | Type Lﬁgunctinn | Process Path
2 * 0x00050077 WH_MOUSE Q00001020 Cr\Program Files)YiwarelvMyeare Tools)Yiiwarel
Startup * 0x004500b3 WH MESSAGE Ox00<40ad40 CH\Tools\IceSword_enl.12%is_enlIceSword, exe

* 0x00ad00f3 00001038 CTeskWare|HomekeyLogaeriKeyLogger, exe
_=- ¥ 0x006200F5 WH_MSGFILTER 0x0042eb23 C\ToolstIceSword_enl. 1 2%is_en!IceSword. exe
; “0x0043011F WH_CET 000439280 Z\ToolshIceSword_enl.12%is_en!IceSword. exe
Sﬁmgﬁs * Ox00a7014f WH_CET Dx004a9daf CiTools\ceSword_enl. 124s_en\IceSword, exe
‘ 0x001501a1 WH_MSGFILTER, 0x75b65886 CHWINDOWSsystem32iosrss exe

Newer rootkits do not directly hook tables, but instead modify the code of the
legitimate API handler or dll to insert a JMP instruction within the file header that
points to the rootkit. This leaves the table intact and unmodified, but any process
which attempts to call that API will get redirected to the rootkit. In some cases the
file on disk may be left intact as well and only running code modified.

This screenshot shows Icesword reporting a number of kernel hooks. Of
particular note is that malicious code has been injected into ntoskrnl.exe the OS
kernel for Windows, which has hooked the SSDT APIs for NtOpenProcess,
NtTerminateThread, NtCreateThread, NtCreateProcessEx, NtTerminateProcess, and
NtOpenThread. This particular rootkit is able to monitor and control any attempt to
start a new process or kill an existing one.

Scan Modules Hooks

|- | Description S . R R . .
-7-- IAT hookiAddr 1001268):GetProcAddress in CHWINDOW S explorer, exe (FrE0aedl == Sch77774(n C\WINDOY
--?-- Inline code modified Address: 1001268, Len:4 (In .kext of CYWINDOWS explorer, exe), Close
----- Inline code modified Address: 7c801afs (LoadLlibraryExW), Len:S {In .text of CHAWIRDOMW SYsystem32 kernel 32,
--?-- Inline code modified Address: 7e90daes (ZwPratectvirkualMemary), Len:S (In kexk of CYWINDOWS swstem3z2in
--7-- Inline code modified Address: 7o90dfae (ZwibtritevirtualMenmors, Len:s (In kext of COWIRDOW S syskem32inkdl
--7-- Inline code modified Address: 7o90e47c (KillserExceptionDispatcher), Len:S (In kexk of W INDOWSsystem 3z
----- Inline code modified Address:804dcbz2, Len: 18 (In bexk of OV INDOW S system 32 ntoskiml, exe),

General Scan

----- Inline code modified Address:804dch3a, Len:1 (In kext of CUWINDOWS syskem32intoskinl, exel, Module Scan
----- Inline code modified Address:804dda®d, Len:1 {In text of CYWINDOWS system32intoskiml exel,

----- Inline code modified Address: 30485531, Len:1 (In text of CYWINDOWS system32intoskiml exel,

----- Inline code modified Address:3053767F (KeBugTheckE:), Len:S (In .text of CYWINDOMWS system32yntoskenl ex Restore

|---—- | Inline code modified Addressi80581702 (MeOpenProcess), Len:S (In PAGE of C1WINDL kem3zinkoskenl.
----- Inline code modified Address: 8055387 (MtTerminateThread), Len:S (In PAGE of CiWIMDOWS) system32inkosk
----- Inline code modified Address: 30586045 (MECreateThread), Len:s (In PAGE of CYWINDOW S svstem3Zintoskinl.a
----- Inline code modified Address: 305807 cd (MECreateProcessEx), Len:S (In PAGE of CiWINDOYW S system32inkosks
----- Inline code modified Address: 80552695 (METerminateProcess), LemS (In PAGE of CUWINDOW S system3Zintosk
----- Inline code modified Address:805e1941 (MtDpenThread), Len:S (In PAGE of CWIRDOW S system32intoskinl . e
--7-- IAT hookiaddr 77dd1218): GetProcaddress in O \WINDOW S syskem32tadyapis2. dil (7o30aed0 == Sch77774(in ¢
--7-- Inline code modified Address:77dd1213, Len:4 {In .text of CAOWINDOW S swstem32adyapi3z. dil).

--#-- IAT hookiAddr 7e41133c):GetProcAddress in COWINDOWS svstem32iuser 32 . dll (7c80aed0 == Sch?7774(in Y
--#-- Inline code modified Address:7e41133c, Len:4 (In .text of CoAMWINDOWS syvskem32user32. dil),

--7-- IAT hooki Addr 7711004 GetProcAddress in CWINDOWS sysbem32igdizz dl (7c80aed40 == Sch77774(n Ciive
--7-- Inline code modified Address: 7711064, Len:d (In bext of M IMNDOWSY sy skem32yadizz, dil),

--7-- IAT hoolkd Addr 77281188 GetProcaddress in CWINDOW S\system32 Crypt32. dl (Fodlaed] == Sch77774(in
--7-- Inline code modified Address:77ag1188, Leni4 (In kext of COWINDOW S\ svstem32 i Crypt3z. di.

--7-- IAT hookiaddr 76c31238) GetProcAaddress in W INDOW S system32 winkrust, dil (7c80aed0 == Sch?7774(in C
--7-- Inline code modified Address:7ec31233, Len:4 {In Jtext of CHAMWINDOW S syskem32hwintrust, dil),

& 'Start| = Remaovable Disk (K] | 0 leeSword122en || " lvetrq18845

This screenshot shows GMER reporting inline or "hidden" hooks in the ntdll.dll
process which is used to handle translating user mode applications (Ring 3) API
requests to the kernel. In addition to hooking the virtual memory handler, this
rootkit has also hooked i8042prt.sys and sunkfilt.sys a keyboard and mouse driver
respectively.

__| = GMER 1.0.15.15281

Fiootkit/hd alware l e]

@E Type | M ame | W alue | v
5 JTEID e IMD WSS pstem 32D RIVER ShiB042prt sy entry paint in 'rerc' section [OxFE5149... ol
- E| init C: AW IMD DWW ShSpstern 328 Dnversheunkfilt. sz entry paint in init" section [OxFEEE73..
et C:WwMH DWW S senstem 32 evchost exe[580] ntdll M Protectyfitu... FCI0DEEE 5 Bytes JP 00940004 v
i text CWwWAH DWW S eostem32sevchost exe[580] nkdll dilk tritedintual .. FCI0DFAE 5 Bytes JP 00380004 v |
et W IMD W S havstem32hevchost. exe[B80] ntdll. kiU serEwcepti.,. FCIDE4FC 5 Bytes JMP 00990000 v
o Chest C: A IMD W Shastem32hevchost exe[D80] ole32 dill CoCreatelnst... 7750057E 5 Botes JMP DOFEQOOA L
1| text WM DWW S SE wplorer EXE [328] ntdll dlMProtectyirtualt emon YCA0DEEE 5 Bytes JWP O0B 70004 v |
—L | temt C: AWM DWW S SE wplarer EXE [328] ntdll. dINMBafitetirtualbd ermory FCA0DFAE 5 Bytes JWP 00CTO00A B
et C: 4 IMD DWW SAE mplorer EXE[328] ntdll dlkil serE sceptionDizpate... YC0E47C & Bytes JMP D0BE000C i
File CAIMDDWShSpstem32ADRIVER S E042prt sy suspicious modification v
v
¥ |
[,
E
[
=
[
a Start| [|ceSword122en “e* Removable Disk [K:) | 3 Owner l@

This screenshot shows GMER reporting a keyboard hook and an IRP hook in
atapi.sys, a low level hard disk driver. This is not a sure sign in itself as some
change rollback or shadow copy software may use IRP hooks in the disk driver, but it
should be examined very carefully.

'} B GMER 1.0.15.15281

e

J“ F ootkit /b alware l By]

Trpe | Mame | W alue | W

AttachedD... \Drverhkbdclazz \DeviceF.eyboardClazz0 |20l 22 20z i
attachedD... SDrver'\kbdclass \DevicehkepboardClas s [sDirvl 22,208

Device - \Dinveratapi \DevicetHarddiskWDRO 232939ECH v |
File AR DWW S seugtem 32 drivers' atapi. sus guzpicious modification ¥ |

v |
v |
v
v |
I
v |
v |

ke
Conne Ok,

i Start| == Remavable Disk [K:] | = avr ||E’|

Another common technique among AR products is to examine raw disk data
and compare it to data reported by APIs, or comparing the processes listed in
PsActiveProcessHead with the processes listed by Task Manager. Discrepancies are
reported as hidden processes and files.

This screenshot shows Rootkit Revealer reporting a number of hidden files. However,
these all appear to be false positives. Any file which changes between the time the first (raw)
scan is done and the comparative (API) scan is done will show up as discrepancies

“§- RootkitRevealer - Syzinternals: www.sysinternals. com

File Option: Help
Fath | Timesztamp I Size | Dezcrption =
ﬁ HELMASECURITY W PolicyhSecretshS... 2462007 5.3, O byte: Key name containg embedded nu...
ﬁ HELMASECURITY W PolicyhSecretshS... 2462007 5.3, O byte: Key name containg embedded nu...
ﬁ HELMASECURITY W PolicyhSecretzx... 2/6/2007 5.1, O bytes: Key name containg embedded nu...
ﬁ HELMAWSOFTWARE SMicrozafts Crapk.. BA2742007 4:.. B0 butez Data mizmatch bebween Window. .
=D 0bytez Hidden from YWindows AP
YR epair$Config 2/642007 31, 2 bytez Hidden from Windows AP —
CINET = B/27 2007 11... O bytez Hidden from Wwindows AP
15 Txflog 2062007 37 O byte: Hidden from *Windows AP
WETwfLog 3T opa 3T 2iBS2007 37 3.25ME Hidden from windows AP
C:M3E stend $Rmbd etadata' 35 epair 262007 37 0 byter Wizible in directon indesx, but nat .
[C:ASE stend SR mbdetadatah $ T xf BAZ27S2007 17 O bytes Wizible in directon indes, but nat .
[C:AEE stend 3R mbd etadatah 3 TxiLog 206/2007 37 Obyte: Wizsible in director indes, but nat .
CAEEstends$RmMetadatah$Tuflogh... 2/6/2007 31, 100 bptes Vizible in directory index, but not ..
CA3Estends$Rmietadatah $Taflogh... B/27/2007 4. E4.00 KB “isible in directony index, but not ..
C:MEE stends$Rmietadatah$Taflogh... BA18/2007 2. 10.00 MB “izible in directory indes, but not ...
C:AE stendh$Rmbdetadata\$TafLogh... BA2742007 4:.. 10.00ME “isible in directory indes, but notb
C:AProgramDatahMicrozofthSearchh. . BA27/2007 4. 24.00KE Hidden from “Windows &P
C:AProgramDataiMicrozofthSearchh. .. BA27/2007 4:.. 4.00KE Hidden from “Windows AP
C:A\ProgramDatadMicrozofthSearcht. .. BA27/2007 4: . 64.00 KE Hidden from Windows AP
C:A\ProgramD atatMicrozofthSearcht. .. B/27/2007 4. E4.00 KB Hidden from Windows &P
C:AProgramD atatMicrozofthSearcht. .. B/27/2007 4. E4.00 KB Hidden from Windows &P
E:'\UserstpData'xLD... 913430828 1... 43 bptes Hidden fram Ywindows AP
C:4indows \MinidumphMiniQB2707-... B/27/2007 4. O bytes Wigsible in Windows AP, directory ...
C:iwindowshPrefetch\SMEBEWURW. . B/27/2007 4: . 19.21 KB Hidden from “indows &P,]
C:WwindowzhSpeterm 325 LU DHW B/27 /2007 2. O bytez Hidden from YWindows AP
C:MWwindowshSpsterm 32 wR B/27/2007 4: 0 byte: Hidden from "Windows AP
C:\windowsh\Spstern32whemiPerfo... BA27/2007 12... 27.92KE Hidden from Windows AP
= O byte: Hidden from "Windows AP
“$Repair:$Config 2/642007 31, 2 bytez Hidden from YWindows AP
CINET= 2/642007 31, 0 bytez Hidden from YWindows AP
153 Txflog 27642007 31, O bytez Hidden from Wwindows AP
WETwfLog 3T opa 3T 2062007 37 1.00ME Hidden from wWindows AP
O:M3E wtendS SR mbd etadata' 35 epair 2iBS2007 37 O byte: Wizible in directon index, but nat .
) D:A3E stend\ $Rmb etadatah T xf 262007 37 0 byter Wizible in directon indesx, but nat .
[D:A3E stend\ 3R mb etadata$ TxfLog 20652007 37 O bytes Wizible in directon indes, but nat .
04 3Ewtendy$Rmidetadata T fLog... 2/B/2007 31, O bytes Wizible in directon indes, but nat .
D:A$Ewtend $Rmietadatabh$Taflog... E/27/2007 4. EB4.00 KB “isible in directony index, but not ..
D:A$Estend $Rmbetadatab$Taflog... E/27/2007 4. 10.00 MB “izible in directory index, but not ..
O:A$Estend W $Rmbetadatab$Taflog.. 2/6/2007 3.2, 10.00 MB “izible in directory indes, but not ...
=) O byte: Hidden from *Windows AP
WiR epair$Caonfig B/28/2006 3. 3 byter Hidden from "Windows AP
3Tk B/28/2006 3. 0 byte: Hidden from "Windows AP
143 TxfLog B/28/2006 3. O bytes Hidden from *Windows AP
WETwfLoa 3T ops: 3T 9132006 6. 1.00ME Hidden fram windows AP
E:AFE stends$Rmietadatah$Repair B/28/2006 3. 0bytez Wigible in directory index, but not .
1 E:MNSE stend SR M etadata 5T «f B/28/2008 3. 0bytez Wigible in directory index, but not .
1 E:MNSE stend R mM etadata $ T =iLog B/28/2006 3. O bytez Wigible in directory indes, but not ..
E:MBE stendh$Rmbdetadata\$T=fLogh... 94132006 6. O byte: Wisible in directory indes, but nat .
E:ABE stendh$Rmbdetadata \$Teflogh... BA2742007 40 G400 KB “izsible in directon indes, but not .
E:ABE stendh$Rmbdetadata\ $Tuflogh... BA2742007 4:.. 10.00ME “izible in directory indes, but nob
E:AE stendt$Rmbdetadata\$T=fLogh... 941342006 6. 10.00ME “isible in directory index, but ok

<]

This screenshot shows a GMER scan reporting a huge list of system
modifications entirely caused by either the AVAST anti-virus package installed or
GMER itself. The GMER executable in this case is named yohOwrli.exe.

AVAST has not only hooked IAT and SSDT, but also has created filtered

device drivers for the network card, hard drive, and CDROM.

Rootkit/t alware l (AR]

Tupe | Wame | Yalue

S5DT WSystermFloothSystem325DirivershaswSP.SYS [avast self pratection module/&WAST Software] ZwiFreevintualb emarny [0xF7143818]
S50T WSpstermBoothSystemZ2hDinvershazwS P 5Y'S [avast! zelf protection module/8%a5T Software) Swlpentey [0-F714B52E]

S5DT WSystermPloothSystem32\DrivershaswSP.5YS [avast self pratection module/8WAST Saoftware] ZwlpenProcess [0-F714B262]

S5DT WSystermFloothSystem325DrivershaswSP.5YS [avast self pratection module/&WAST Software] ZwlpenThread [0xF714B2C8]

S50T WSustermB ooty SystemZ2hDinvershazwS P 5Y'S [avast! zelf protection module/8%a5T Software) ZwProtectvirtualtdemony [OxF7143BB 0]
S5DT WSystemPoothSystem32\DrivershaswSP 55 [avast! self protection module/8WAST Software) Zwiluenifaluekey [0«F714E372]
S5DT WSystemFloothSystem325DirivershaswSP.5YS [avast self pratection module/&WAST Software] ZwRenameley [0:F714BE2E]

S50T WSogtermBoothSystemZ2hDinvershazwSP.SY'S [avast! zelf protection module/8%A5T Software) ZwRestorek ey [OxF714B330]

S5DT WSystemPFoothSystem32\DrivershaswSP 55 [avast! self protection module/8WAST Software] ZwS ety aluekey [0xF714BAB4]

Code WSystermFloothSystem325DirivershaswSP.5YS [avast self pratection module/&WAST Software] ZwCreateProceszEx [OxF715880E]
Code WSugtemB oot SystermZ2hDinivershazwS PSS [avast! zelf protection module/aaS5T Software) ZwCreateSection [0«F7158702]

Code WSystemPFoothSystem32\DrivershaswSP 55 [avast! self protection module/8WAST Software] ZwiLoadDriver [0xF715883C]

Code WSystemPloothSystem32\DirivershaswSP.SYS [avast self pratection module/8WAST Software] MiCreateSection

tent nkozkrnl.exel_abrormal_termination + 313 SO4EZFE4 1 Buyte [72]

et C:\Program FileshaWAST SoftwarehdvasthbivastS ve exe[536] kemel32 dil5 etUnhandledE sceptionFilker TCA103586 4 Bytes [C2, 04, 00, 30] 4RE
et C:ADocuments and S ettings\user\DesktopyohDwrl.exel1 336] ntdll. diiLdiLoadDl FCI1E1CA 5 Bytes JMP 00150030
tent C:vDocuments and S ettingz\wzenDesktophpohOwrl exel13326] ntdll. dILdriUnloadDl FCI17186 B Bytes JMP 001500EC
et C:ADocuments and S ettingz uzerDeskiophyohlwd exe[1336] ADWVARPI 32 dl 5 et5 ervice0 bjectS ecurity FFE3IGBET 5 Bytez JMP O03CO104
et C:ADocuments and S ettings\user\Desktop'ypohDwrl. exe[1 336] ADVAP| 32, dllChangeServiceConfigh F7EIECCY 5 Bytes JMP DO3CO0E4
tent C:hDocuments and S ettingz\wzenDesktophpohOwrl exel1336] ADVARPI 32 dll ChangeS erviceConfighs YFEIBEET B Bytez JMP O03COT20
et C:ADocuments and S ettingz uzerDeskiophyohlweh exe1336] ADVARPI 32 dllChangeS erviceConfigd, ¥FE3RFET & Bytes JMP O03CO15C
et C:ADocuments and S ettings\user\Desktop'ywohDwrl.exel1 336] ADVAPI 32 diChangeServiceConfig2ia FFEIEFET 5 Bytes JMP 003C0158
et C:hDocuments and S ettingz\wzenDesktophpohOrl exel1326] ADVAPI 32 dll CreateS erviced, FPEITOTT B Bytes JMP 003C0020
et C:ADocuments and S ettingz uzenDeskiophyohlwe exel1336] ADVARPI 32 dll CreateS erviceis FrEAT209 5 Bytes JMP 003CO0EC
et C:ADocuments and S ettings\user\Desktop'ypohOwrh, exe[1 336] ADVAP| 32 dllDeleteService FFEI731 5 Bytes JMP DO3CO0AE
et C:ADocuments and S ettingz\uzer\Desktop'ywohDwrh exe[1 336] USER32.dIlS etw/inE ventHook, F7DEE3D3 5 Bytes JMP 00300030
et C:ADocuments and S ettingz uzerDeskiophyohlweh exe[1336] USER 32 dilL nhoakwinE vent FrOEER44 5 Bytez JMP 003DO0RC
et C:ADocuments and 5 ettingshuser\DesktopiyohOwrl.exe[1336] USER 32 dilS etfwindowsH ook E s TFDEEEZ1 5 Bytes JMP DO3DOO0E 4
et CADocuments and S ettingz\uzer\Desktop'ypohDwrh, exe[1 336] USER 32 dl nhookwindowsH aok Ex FPDEF29F 5 Bytez JMP 00300720
et C:ADocuments and S ettingz uzenDeskiophyohlweh exe[1336] USER 32 dilS etwindowsH ook E b, FrOY0Z2B2 5 Bytez JMP 003D0O0AE
|&T CAWINDOW S hapstem32haervices. exa[404] @ CAwWINDOWS \spstem32\zervices. exe [ADVAPI32 dil CreateF... 007DO002

|AT CAWIMDOWS apstem 32 services. exe[404] @ CAWINDOWS epstem32hservices.exe [KERMNELSZ2 dllCreate... 00700000

Device WFileSpstermi Mz WY aswSP.5TS [avast! self protection mod
Device WFileS pstem'Fastfat \FatCdrom aswSF.5YS [avast! zelf protection mod
AttachedDevice WDriversTopip \Devicehlp aswTdi.5YS [avaszt! TDI Filker Driver/ah
AttachedDevice WDriverh T opip WDeviceh Top aswTdi.STS [avazt! TDI Filker Driver A
AttachedDevice WDirivert T cpip \DevicelUdp aswTdi 55 [avast! TDI Filker Driver/ah
AttachedDevice WDriversTopip \DevicesF awlp aswTdi.5YS [avast! TDI Filker Driver/ah
Device WFileSystermhF aztiat WFat aswSP.5TS [avast! self protection mod
AttachedDevice FileSystemiF astiat WFat flthd ar.zpz [Microzoft Filezpstem Filker b
<

This screenshot shows Icesword reporting an apparently alarming finding that
Unknown executable has hooked several important SSDT entries including
NtDeleteKey and NtDeleteValueKey. These hooks were created by the Avira anti-
virus software which then obfuscated the hook, probably to prevent malware from
interfering but making it all the more suspicious looking.

sy
Index | Current Addr | KModule Criginal Addr | hame

COx3A OxB0659767 lﬂ@ LW IMNDOW S syskem32intoskrnl. exe OxB0E5976T MEDebugZontinue
*0x36 OxS0SESFEL VW INDOW Shsystem3zintoskenl. exe 0xS0SE5FEL MEDelayE xecution
C0x3C Ox80S79664 VW INDOW S system3zintoskeml. exe 0x30579664 MEDeleteatom
C0x30 Ox90647547 VYWINDOW S system3zintoskrnl. exe 0x30647547 MEDeleteBootEntry
“0x3E OxB0SDECFT VW INDOW Shsyskem3zintoskrml. exe 0x30SDECF7 MEDeleteFile
" Ox3F 0xFEB97123 Unlknown 0x30590EE0 MEDeletekey
" 0x40 OxE06380DAS W INDOW SYsystem3zintoskenl. exe OxE063E0AS MEDeleteObjectAudita
‘x4l OxFSE9712D Unknown 0x30597430 MEDeleteyaluekey
COxgz Ox30S7FED0 VYW INDOW SYsystem3zintoskeml. exe 0x30S7FED0 nkDeviceloControlFile
043 0x@0SC10EL VW INDOW Shsystem3zintoskiml. exe 0xS0SC10EL MEDisplayString
* Oxdd 0xG3057436E VW INDOW S syskem3zintoskiml. exe 0x3057436E MEDuplicateCbject
‘045 OxB0S7D3F7 VW IMNDOW S system32intoskrnl. exe 0xB0S7D3F7 MEDuplicateToken
COxd6 OxE064 7556 VW INDOW S system32intoskenl. exe 0x&064 7556 MEEnUmerakeBoakEnty
047 OxB0SEFTEA VW INDOW Shsystem3zintoskeml. exe OxS0SEFTEA MEEnUmerakek ey
" Ox4a Ox30647533 YW INDOW S system3zintoskeml. exe 0x 30647533 MEEnUMmer ateSystemE
" Ox49 0xG30S801FE VW INDOW Shsystem3zintoskrml, exe 0x30S301FE MEEnuUmer akely aluek ey
COxdh OxB062444a VW IMNDOW Shsystem32intoskrml. exe 0xB0624445 MEE xtendSection
* Ox4E 0xB05E2DZED LW IMNDOW St syskem3zintoskrml. exe 0x80SE2DZ2D0 MEFilkerToken
fOx4C 0x30595095 VW INDOW Shsystem3zintoskenl. exe 0x30593095 MEFindAkanm
‘0x4D 0x30579764 VYWWINDOW SYsystem3zintoskeml. exe 0x30579764 MEFlushBuffersFile
COx4E 0x305769A6 VWINDOW S system3zintoskrml. exe 0x305769A6 MEFlushInstructionCar

Eliminating false positives

After having examined all the hooks present in the OS, the investigator
should try to eliminate any false positives by examining all the software loaded on
the system to determine whether any legitimate applications may have placed the
hooks. In some cases it may be possible to simply disable the software being tested
temporarily and run another scan. In other cases it will be required to completely
uninstall the software to remove all of its hooks. This process should be completed
methodically and the system rescanned after each change to see which hooks, if
any, disappear. ldeally, a scan of the system in a known clean state would have
been done to allow a comparison to be made.

Once all legitimate software which may have hooked the OS has been
disabled or removed, the remaining hooks can be assumed to either be part of the
OS itself or a rootkit. Research into the OS design will tell whether it has placed its
own hooks or not. These Microsoft dlls are known to hook other dlls as part of their
normal function: setupapi.dll, mswsock.dll, sfc_os.dll, adsldpc.dll, advapi32.dil,
secur32.dll, ws2_32.dll, iphlpapi.dll, ntdll.dll, kernel32.dll, user32.dll, gdi32.dll.

Inline code modifications of kernel files are generally extremely suspicious,
however, Microsoft has released a set of APIs called "detours" for inline code
modifications for use in hot patching live systems without needing to reboot. The
changes made by applications using these APIs would show up as hooks in a rootkit
scanner. Properly implemented these types of hooks should be temporary and rare,
however there is no way to be completely certain whether any given inline kernel
modification is malicious or not without examining the memory location referenced
by the hook. If you have a tool to enumerate dlls called by processes, such as
Process Explorer, you can check to see if detoured.dll is listed. If so, this is generally
a sign that the Detours API is in use and has hooked the process.

Linux and MacOS also use what’s called runtime patching or runtime memory
barrier patching which replaces instructions in the .text section of the kernel.
Generally this is done to optimize the kernel for the specific instruction set of the
CPU without having to compile and release a binary for every type of CPU, though
sometimes it is done to apply kernel patches to a system that cannot be rebooted.
All runtime changes should be documented in the .altinstructions or .altstr_replace
section of the kernel. Any changes not documented there should be considered
malicious, but even documented changes may show up on a running kernel
modification scan from a tool like elfstat. And ultimately there is nothing stopping
rootkit authors from properly documenting modifications to make the rootkit seem
more legit.

Examine automatic program execution entries

Rootkits, like any other complex software are generally composed of several
interrelated files, which may include device drivers, executables, and dependent
dlls. Often there will be dozens of such files, each of which has a specialized
function, stored in different folders all over the hard drive. The rootkit needs to get
all of them into memory to function properly. This job falls to loader files, which only
serve to load the other rootkit components into memory. There may be a half dozen
or more distinct loaders, each capable of kickstarting the rootkit in case the others
are deleted.

Rootkit authors tend to favor the "belt and suspenders" approach to making
sure their rootkit is loaded on boot. Often, despite having loaders specified in:

HKLM\Software\Microsoft\WindowsNT\CurrentVersion\Windows\AppInit_DLLs
HKU\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
HKLM\SYSTEM\CurrentControlSet\Contro\SafeBoot\Minimal\

all of which are stealthy places to hide, the rootkit will still have loaders in all the
obvious places you would think of to look for malware, like:

HKLM\Software\Microsoft\Windows\CurrentVersion\Run
and user Startup folders, found at

C:\Documents and Settings\%username%o\Start Menu\Programs\Startup for XP or
C:\Users\%username%o\Start Menu\Programs\Startup for Vista and later.

Checking common locations for automatic program execution is a good step
to take in any investigation, even where something as stealthy as a rootkit is
concerned.

Remember to check System Services, Task Scheduler, and for Linux, cron
jobs also. The presence of a file with a name consisting of a series of random letters
and numbers in any of these places is a dead giveaway. Checking obvious locations
for a loader is often a quick and easy way to unmask the presence of a rootkit which
may have other more stealthy components elsewhere.

Another quick check which surprisingly often yields results is to check the
system directories for hidden files, ie

C:\Windows\system32

Hidden files generally show up as "grayed out". Despite being buried in a
huge pile of legitimate files which would otherwise make finding any file which didn't
belong difficult, rootkits quite often mark their files as hidden as "extra protection”,
which only serves to make them stand out to an investigator. Very few real OS files
are marked hidden in the filesystem, so it is fairly easy to check online whether any
hidden files that turn up are legitimate or not. In Linux OS check Ismod and
/proc/modules for unknown or suspicious kernel modules.

Memory Scan

Even though there are methods for a rootkit to hide its code in memory, not
all rootkits use these techniques, so a good AV or AR program which includes
memory scanning is a good step to take, as is using Task Manager or ps to look at
running processes for anything that looks suspicious. Examples of suspicious
processes would include unusual filenames or applications which should not be
running or which should have a visible window but do not. Many rootkits hook the
default browser and run it in a hidden context, so if the web browser is shown as
running when it is not visible as such, that can be a sign of infection. Most linux
distributions using kernel 2.6 or newer enable CONFIG_STRICT_DEVMEM which
disables the ability to read physical RAM, which may be required for some rootkit
scanning tools.

Open Ports

It is also a good idea to check all the open TCP and UDP ports, using a tool
like TCPView or netstat. Even though some rootkits hide network connections, not
all do, so it is worthwhile to check. The computer being tested will need to have
internet access for any attempts by the rootkit to "phone home" to show up. Close
all other programs which may have an active internet connection to more easily spot
unauthorized connections. Then do a reverse DNS lookup on any IPs which show up
to determine if there is a legitimate reason for that connection.

For rootkits which use hidden connections, having another computer sniffing
network traffic using Wireshark and a hub or network shunt can be a useful way to
expose a rootkit's communications to its remote command and control server.
Rootkits may connect back on any port or protocol. What's more important is the
connection end point. A lack of communication should not be construed as no
infection, since some rootkits only phone home very infrequently, but unexpected
connections are a good indicator of infection.

Taking Notes

Keep meticulous notes of all information uncovered during an investigation.
Rootkits are known to behave erratically. A registry entry which points to one of the
rootkit files may disappear the next time the registry is examined. Open network
connections may be brief and infrequent. Take screenshots where possible and in
every case make note of file names and locations, memory offsets, registry entries,
IP addresses, and disk sector addresses.

Making A Diagnhosis

After all the above steps have been done, make copies of any files which are
suspicious and upload them to a multi-AV site such as virustotal.com or
novirusthanks.org. Most rootkits use encryption or other obfuscation techniques and
are only likely to have been previously identified by a handful of AV vendors.
Running a scan using a large number of AV signature databases is more likely to
result in a positive match should any of the files actually belong to a rootkit. In the
absence of a direct match in one of the AV databases, a malware sandbox such as
Anubis anubis.iseclab.org or camas.comodo.com may be useful for automated
heuristic behavior analysis and comparison to known rootkit profiles. This will often
catch variants of popular rootkits that have simply had minor modifications to evade
AV.

However, many rootkits monitor the execution environment and will refuse to
run in a virtualized or sandboxed environment. In this case the investigator is forced
to make an independent evaluation of the heuristic behavior of the computer as to
whether it is consistent with an infection. There is no sure standard, but most
rootkit infections will exhibit multiple signs, such as hooks, hidden processes, files,
and network connections.

Other Traces Of Malicious Activity

A rootkit compromised machine may function as a staging area for the rootkit
user to launch additional attacks on other machines on the network. If this is the
case, evidence of this activity may be found on the computer hard drive which can
point to the underlying rootkit. Tools for malicious activity can be considered a sign
of an infection.

Hackers often code attacks in Perl, Ruby, and Python scripts, so support
libraries for these programming languages may be an indicator of malicious activity.
Network scanners such as Nmap, sniffers such as Wireshark, password crackers such
as John the Ripper, and exploit frameworks such as Metaplsoit may also be indicators
of malicious activity. Whether they have a legitimate reason to be on the machine
will depend on its regular use and role in the network. Logs of other machines on
the network, including IDS, which indicate a pattern of malicious activity originating
from the suspect machine may also be a sign of infection.

Advanced Rootkit Detection

Even though hypervisor rootkits, memory only rootkits, and BIOS based
firmware rootkits have not been found in the wild so far, they cannot be ruled out,
particularly as various nation-state actors become involved in the development of
targeted malware. The existence of these kinds of advanced rootkits adds a greater
element of uncertainty to rootkit detection.

While it is possible to use commands like dmesg to tell if virtualization
components are loaded in the OS, along with other techniques such as examining the
IDT (Interrupt Descriptor Table), if the machine is already known to be running a
virtual environment as part of its normal function this gives no information whether
there is any additional hypervisor other than the expected one.

Forensic analysis of the hard drive on a known clean system may show signs
of a hypervisor rootkit which resides on the hard disk but not one which is only
memory resident or any rootkit in hardware flash memory. Hardware based rootkit
scanners, such as copilot, may be able to unmask these advanced types of rootkits,
but even that may not be able to catch all of them or may itself be vulnerable to
compromise. Due to the highly sophisticated nature of the threats, 100% certainty
that a rootkit is not present on a system is not possible. Even a brand new computer
never before used can be compromised as there have been instances of malware
infected software provided direct from the manufacturer.

Rootkit Removal

The most reliable and efficient method of removing a rootkit is to low level
format the infected hard drive using manufacturer's software or firmware for that
purpose and reload the OS from known good backups. In cases where computer
firmware is suspected of compromise, the additional step of re-flashing all BIOS
firmware using firmware cryptographically signed by the manufacturer may be
necessary. For real certainty, every writable space, including all drives and
firmware, would need to be flushed.

If this is impractical, steps may be taken to attempt to manually remove the
rootkit piecemeal, however success cannot be guaranteed. The key to a manual
rootkit removal is to have accurately and thoroughly mapped out all its functions,
hooks, and files. Often a rootkit will be programmed to check whether its hooks and
files are intact and replace them if they are modified or deleted. In order to fully
remove a rootkit, all its files, hooks, and registry entries must be removed while the
computer is offline to prevent the rootkit from detecting the changes and undoing
them.

Additionally, any device drivers and kernel files which have been modified by
the rootkit will need to be restored from backup as they are critical for the operation
of the OS and cannot be simply deleted. It will be crucial when restoring damaged
drivers and kernel files to ensure they are the same version as the original. If known
good backups are not available, OS files may be restored from the original
installation source.

Before attempting a removal, it is advisable to observe the rootkit in
operation on a clone drive using advanced debugging tools, such as SoftICE and
Ollydbg, which monitors heap and stack, traces registers, recognizes procedures,
loops, API calls, switches, tables, constants and strings. This is to make sure that all
hidden components are uncovered to the fullest extent possible. However, many
rootkits watch memory space for known debuggers and will attempt to confuse the
process by shutting down, falsifying data, or terminating the debugger.

It is important to gather as much information as possible before attempting
removal because if even one component is missed, the rootkit may still be operable
and either recreate deleted components or download them fresh from its control
server. It may be necessary to fully reverse engineer the rootkit to determine how
to completely remove it.

In cases of an MBR infection, the MBR will need to be overwritten with a clean
copy using the fdisk utility, fixmb or for Linux grub-install. In cases of slack space
infection, the slack space can be overwritten without damaging the files on disk.

This is done with a specialized utility like Eraser or bmap. In fact, if the whole hard
drive is not going to be wiped, it is probably a good idea to at least wipe slack space
and free space, even if there is no concrete indication the rootkit is storing files
there, simply because it doesn't harm the filesystem and there just might be some
backup copy of the rootkit there waiting to spring back into action. For cases of ADS
infection, a different set of specialized tools will be required to clean them. Some of
these tools include: ADSSpy, Streams, and StreamArmor.

If the rootkit has been positively identified by an AV vendor, it may be
possible to use that vendor's AV software to remove some or all of the rootkit files
automatically. For this reason multi-AV scan sites will be valuable in identifying
which AV vendor has detection signatures for the rootkit. In addition, there may be
information online or available directly from the AV vendor which more fully
describes the operation of the rootkit and exact removal instructions. Even if no AV
vendor has signatures for the rootkit, it may still be useful to run an AV scan which
includes good heuristic detection, to complement other efforts and make sure
nothing is missed.

